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ABSTRACT

A two-step hybrid perturbation-Galerkin technique for improving the usefulness of per-

turbation solutions to partial differential equations which contain a parameter is presented

and discussed. In the first step of the method, the leading terms in the asymptotic expan-

sion(s) of the solution about one or more values of the perturbation parameter are obtained

using standard perturbation methods. In the second step, the perturbation functions ob-

tained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This

semi-analytical, semi-numerical hybrid technique appears to overcome some of the draw-

backs of the perturbation and Galerkin methods when they are applied by themselves, while

combining some of the good features of each. The technique is illustrated first by a simple

example. It is then applied to the problem of determining the flow of a slightly compressible

fluid past a circular cylinder and to the problem of determining the shape of a free surface

due to a sink above the surface. Solutions obtained by the hybrid method are compared with

other approximate solutions, and its possible application to certain problems associated with

domain decomposition is discussed.
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No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
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1. Introduction

A two-step hybrid analysis technique, which combines perturbation techniques with the

Galerkin method, has been presented and discussed by the authors. It was applied to some

singular perturbation problems in slender body theory [5], as well as to several classes of

problems involving ordinary differential equations [2,6,7]. That technique also promises to

be useful in the analysis of a very wide variety of partial differential equation type problems

as well. In this paper we apply the method to some problems involving several independent

variables. In particular, we demonstrate its usefulness by applying it to a linear boundary

value problem, a nonlinear boundary value problem, and to a (nonlinear) free boundary

value problem.

The method is based upon a hybrid technique which was apparently first studied by

Ahmed K. Noor and collaborators in conjunction with the finite element analysis of geomet-

rically nonlinear problems in structural mechanics (see Geer and Andersen [5] for several

references). The Galerkin method has, of course, been known and used for a long time.

However, a principle problem associated with its successful application lies in the choice of

appropriate basis functions. In a series of papers Noor and his collaborators have shown for

a variety of structural mechanics problems that the first few terms in a Taylor series expan-

sion of the solution of a parameterized system of discretized equations can be particularly

effective as Galerkin trial functions (or basis vectors). Subsequently, the present authors

[2,5-7] have shown that the terms in either a regular or a singular perturbation expansion

of the solution are also effective trial functions. In particular, we have demonstrated that

the "reduced-basis" solutions can be useful for significantly larger values of the expansion

parameter than the Taylor series or singular perturbation solutions on which they are based.

A treatment of the reduced basis method from a mathematical point of view is given by Fink

and Rheinbolt [3].

Some general observations about the technique are the following: 1) In many perturbation

problems, much effort has to be expended to compute (analytically) each additional term

in a perturbation expansion. Through the use of the proposed hybrid method, the known

perturbation terms can be exploited more fully. 2) Another way of viewing the technique is to

recognize that in many perturbation expansions the functional form of the higher-order terms

can be well approximated by a linear combination of the lower-order terms. Thus, much of

the effect of the higher order terms may be included by applying the reduced basis technique

to a small number of lower order terms. 3) Since it is often possible to develop formal

perturbation expansions for the solution about two or more values of the parameter, e.g. for

small or large values of the parameter, the proposed method is a convenient way of combining

the information contained in these different expansions. This is accomplished by allowing the



set of basis functions to include terms from the different perturbation expansions, which may

be either regular or singular expansions (see [7] for several examples). 4) While the use of a

Taylor series expansion is frequently limited by a finite radius of convergence, the proposed

hybrid method can sometimes yield good results even well outside the radius of convergence

(see [2] as well as our first example here), or even past a real singularity in the parameter [6].

In fact, when information from two or more expansions is employed, the method appears

to provide meaningful (and often very accurate) approximations in "intermediate" regions

of parameter values, e.g., in regions where the parameter is neither "small" nor "large" (see

especially Geer and Andersen [7]). 5) The same general technique may also be applied in

a fully numerical sense in that the perturbation functions themselves may be computed in

discretized form. 6) However the perturbation functions are computed, the hybrid solutions

share with the perturbation solutions the property that the accuracy is greatest near the

expansion points and diminishes as the parameter moves away from these points. Usually

a good indicator of accuracy is found by examining the difference in the hybrid solutions

based on N - 1 terms and N terms. Thus, it is possible to determine the range of parameter

values for which the N-term expansion is valid.

In the following section, we describe the method in more detail and then apply it to a

simple linear boundary value problem in Section 3. In Section 4, we apply the method to the

problem of determining the flow of a slightly compressible fluid past a circular cylinder, while

in Section 5 we apply it to the problem of determining the shape of a free surface induced

by the presence of a sink above the surface. Each of the problems in sections 3-5 involves

an elliptic boundary value problem, yet each serves as a model problem for a much wider

class of problems. The problem of Section 3 is linear, and an arbitrary number of terms in

its perturbation solution can be obtained in a straightforward manner. Thus, while an exact

analytical solution is not known, it is possible to perform a rather detailed analysis of both the

perturbation and hybrid results, including some explicit expressions for some of the hybrid

solutions. In this problem the radius of convergence of the perturbation solution is finite

and is limited by singularities which lie on the imaginary axis of the complex parameter

plane. The problem of Section 4 involves a nonlinear partial differential equation, whose

perturbation solution is tedious to obtain. Its radius of convergence is finite and appears to

be limited by singularities which have real physical significance. The perturbation solution of

the problem of Section 5 is the most difficult of the three problems to compute and is only an

asymptotic (i.e., a nonconvergent) expansion [13]. For each of these problems we demonstrate

that the hybrid method provides a much more useful solution than the perturbation solution

alone. Some general comments about the method and a discussion of its possible application

to certain problems associated with domain decomposition are discussed in Section 6.



2. Description of the Method

The method we wish to describe is a two-step hybrid analysis technique based on the

successive use of perturbation expansion methods and the classical Bubnov-Galerkin approx-

imation technique. To illustrate the general ideas of the method, suppose we are seeking (an

approximation to) the solution u to the problem

(2.1) = o,

where /_ is some partial differential operator and _ is a parameter. (Although we restrict

our attention to two-dimensional elliptic boundary value problems in this paper, we believe

that the method has a much wider range of applicability. Hence, we formulate the method

in terms of a general operator £.) Here (2.1) holds in some domain D , and, in addition,

u must satisfy certain conditions on the boundary of 79, which we denote by 0D. Without

loss of generality, we can assume that these boundary conditions are homogeneous in u.

In the first step of the method, we generate the coordinate functions in a perturbation

expansion of u about one or more specific values of the parameter c, say about e = ep, p =

1, 2,..., P. In the second step, we construct new approximate solutions consisting of sums of

some of these perturbation coordinate functions, each multiplied by an unknown amplitude,

and then determine these amplitudes by using the Bubnov-Galerkin method.

To describe this idea in more detail, suppose that the solution to (2.1) can be expanded

about ¢ = c_ into a series of the form

(2.2) _' = E _¢''_ _(_) + O(_,+_(,)),
j=l

where {ot_#(g)} is an appropriate asymptotic sequence of gauge functions and each u (vd) can be

determined completely by standard perturbation methods (see, for example, Nayfeh [8]). By

our assumption on the boundary conditions on u, each u (pd) satisfies homogeneous boundary

conditions on OD.

A subset of all of the perturbation functions {u (v'D } is now chosen as the set of coordinate

functions for the Bubnov-Galerkin technique and approximations _t for u are sought in the

N

(2.3) _t = _ u (D 6j.N(_),
j=l

where the (unknown) parameters (6i,_r(_)} represent the amplitudes of the coordinate func-

tions u (j). Here each u (D is one of the perturbation coordinate functions u (p'j), and hence

satisfies the boundary conditions of the problem for any choice of amplitudes {6j#v}. To

form



determine these amplitudes, we apply the Bubnov-Galerkin technique to the governing equa-

tion (2.1). Thus, we substitute (2.3) into (2.1) and require that the residual be orthogonal

to the N coordinate functions over the domain _D, i.e.,

l_<k_<N.
_,,v\j ,]=I

Equations (2.4) represent a set of N equations for the N unknown amplitudes. While (2.4)

must, in general, be solved numerically, solving it is much simpler than numerically solving

(2.1). In particular, for a fixed value of e, the solution to (2.4) is a point in N-dimensional

space, where N is reasonably small, while the solution of (2.1) is a continuous function of

the variables x.

We should note that this particular choice of coordinate functions overcomes the main

drawback of the Bubnov-Gaierkin method, which is the difficulty, from a practical point

of view, of selecting a small number of good coordinate functions. By the way they are

constructed, the perturbation coordinate functions are (under certain assumptions) elements

of a set of functions which span the space of solutions in a neighborhood of their point of

generation. Thus, they characterize the solution u in that neighborhood. We also observe

that, in many applications, the functions u@.0 are determined by solving a set of linear

equations, even though the original operator £ may be nonlinear.

For the three applications discussed in this paper we use P = 1 only.

3. A Simple Example

To illustrate the basic features of the hybrid method, we consider the following simple

two-dimensional example. We define u(z, y, e) as the solution to the problem

(3.1) V2u + esin(z)cos(y)u, + 2esin(z)sin(y) = 0, (z,y)e:D,

(3.2) with u=0 for (z,y)eO:D.

Here :D = {(z,y) : 0 < z,y < 7r} and 0T_ denotes the boundary of :D. In (3.1), the sym-

bol V 2 denotes the usual two-dimensional Laplacian operator, and the subscript z denotes

differentiation with respect to m. The solution seems to be positive over the whole domain

_) for positive values of e. It is invariant under the 180 ° rotation z _ 7r - z, y _ lr - y.

Equation (3.1) is also invariant under the transformation e ---. -e and u(z,y) _ -u(z, _r-y).

Thus, we may focus our attention on solutions for positive e. Figure 1 shows surface and

contour plots of the solution for three values of e. For large values of e, the solution exhibits

a number of boundary layer properties (see Section 6).



Step One:

the form

For small values of e, we construct a regular perturbation expansion of u in

N

(3.3 / u = _ _/u(/)(z,V) + o(eN+I),
j=l

where each of the perturbation coefficient functions u (D is independent of e. To determine

these functions, we substitute (3.3) into (3.1) and (3.2) and equate the coefficients of like

powers of e. In this way, we are led to the following system of equations, from which the u (i)

can be determined recursively.

-2sin(z)sin(v) if j : 1(3.4) V2u(i) = -sin(m)cos(y)u_ -1) if 2 < j < N,

(3.5) u (i)=O for m=0, Tr; and V=0, Tr for I__j_<N.

In particular, using (2.4) and (3.5) we find

_(1) = sin(x) sin(y), u(2) -- (3_) sin(2z) sin(2y),

u(z) : (1_-_) [(1) sin(3z) sin(3y) + (1) sin(3z) sin(v)

(3.6)

•1_(4)

-- (5) sin(m)sin(3y)--sin(z)sin(y)],

(49@52) sin(4m)sin(4_/)+ (7@800) sin(4z)sin(2_/)

- (1@200) sin(2m) sin(4y) - (19_) sin(2_) sin(2_/)"

It is easy to determine the general form of each u(k) and to construct a recurrence relation

for the numerical coefficients involved. Thus, many more terms in the expansion can be

computed in a straightforward manner.

Step Two: In the second step of the hybrid method, we use the perturbation coordinate

functions {u (D} obtained in Step One to construct new approximate solutions _ in the form

N

" _- (Dr'm,(3.7) _ = _ 6j.,,_)_, , y),
n=l

where N is a relatively small integer and the new amplitudes {6i,N } will be determined using

the Galerkin technique. (We note that the _ defined by (3.7) satisfy the boundary condition

5



(3.2) for any choice of the {6j, N} because of the conditions (3.5) on the functions {u(J)}.)

The procedure is as follows. We substitute (3.7) into (3.1) and require the residual to be

orthogonal to each of the perturbation coordinate functions, i.e.,

/ f_,[v_a+ _sin(x)cos(v)a.+ 2_sin(_:)sin(v)]_,(_)dx dv = 0,

which may be written in the form

N

(3.8) _][ck,j + _ dk,j] 6j,N(e) = e bi, 1 < k < N,
j=l

where

ck,j=//z)[V2u(J)]u(k)dxdy, dk,j://v[sin(x)cos(y)u(=J)]u(k)dxdy ,

(3.9) b,: - / ]"2 dy.

For this simple example, since the original problem is linear, the equations (3.8) to determine

the {6j,n} are linear. Further, since the integrals in (3.9) can be evaluated exactly, it is

possible in this case to evaluate the amplitudes as rational functions of e. However, we remark

that for most applications (especially nonlinear ones) the evaluation of the amplitudes must

be carried out numerically, typically by an iterative process for gradually increasing values

of the parameter e.

For N = 2, we use the expressions (3.6) to evaluate the coefficients {cks}, {d_,i} and

{bj} explicitly and find

C _2

(3.10) 61,2- 1 + e_/128 ' 62,_- 1 + e2/128"

In a similar manner, using the symbolic manipulation system Mathematica [15], for N = 3

we find

(3.11)

while for N = 4

C 2

61,_ = e, 62,3 - 1 + e2/60 ' 53,3 = _ 5_,3,

56524800e + 1216128 e3

51,4 = 56524800 + 1216128 e2 + 2141 e 4' 5_,4 = e 51,4,

(3.12)
56524800 _3

53,4 = 56524800 + 1216128 e 2 + 2141 _4' 54,4 = e 53,4.



Using Mathematica,

case, we find that

we have obtained explicit expressions for the 6j,N for N _< 8. In each

(3.13) 6j,N=e j+O(_ N+I) as e---*0, for 1 <j _N.

Hence we have verified that our N-term hybrid solution (3.7) agrees with the N-term per-

turbation solution (3.3) as _ --* 0 through N = 8.

In Figure 2, we have plotted the relative L2-error between numerical solutions to the

problem (3.1)-(3.2) and either hybrid solutions (3.7)or perturbation solutions (3.3) for dif-

ferent values of N. Figure 2 demonstrates that: (1) there is a finite radius of convergence

for the perturbation solutions; (2) the hybrid solutions are more accurate than the corre-

sponding perturbation solutions, especially for larger values of _; and (3) for a fixed N the

accuracy of the hybrid solutions gradually deteriorates as _ increases. We discuss this exam-

ple further in Section 6. The numerical solutions were obtained using a simple second order

finite difference method (coupled with SOR) on a 41 by 41 uniform grid. For large values

of e, the numerical solutions are more accurate than the perturbation and hybrid solutions,

although for small c the reverse is true.

4. Circular Cylinder in Slightly Compressible Flow

We now apply our hybrid method to a problem involving a nonlinear partial differential

equation. As a model of this type of problem, we consider the problem of determining the

steady, two-dimensional flow of an inviscid, compressible, perfect gas past a circular cylinder

of unit radius without circulation (see, e.g., Van Dyke [10]). If we introduce the usual polar

coordinates (r, 0) and express the fluid velocity _'in terms of a potential function _0 as

we find that, for r > 1, qo satisfies

Z(_,M) - V_ - (½)M _ {[(i - r-_)cos(0) + _,] Q,

(4.1) +[-(r -1 + r-a) sin(0) + r -2 _oa]Q0 + (7 - 1) Q V2_o} = 0,

where

Q _ r -4 _ 2r-2cos(20)+ 2cos(0)(1-r-2)%o_ - 2sin(0)( r-1 +r-3)q°s

+ + W,

with _, = 0 on r = 1, and _o = O(r -i) as r --_ oo. Here M = U/c is the free stream Mach

number, c is the speed of sound in the gas, and 7 is the adiabatic ratio. For small values



of M the flow streamlines are shown in Figure 3. For subsonic flow, the maximum velocity

occurs at the surface of the cylinder at 0 = _r/2 and 0 = 3_r/2. We now apply the hybrid

method as outlined in Section 2 to this (nonlinear) problem, where M plays the role of the

parameter ¢.

Step One: For small values of M, we use the regular perturbation method to obtain

N

(4.2) ¢p(r,O,M) = _ M _ _p(i)(r,O) + O(M 2N+2) asM ---, 0,
j=l

where each ¢p(J) satisfies a Poisson equation in the region exterior to the cylinder, satisfies the

condition _(,J) = 0 on r = 1, and is O(r -1) as r --* oo. The general form of the perturbation

coordinate functions {_v(¢)} is given by

J

(4.3) = f ,k(r)cos[(2k+ 1)0], j > 1.
k=0

In particular, we find:

Van Dyke and Guttmann [12] have computed 29 terms in the expansion (4.2) using a FOR-

TRAN program and have presented a rather detailed analysis of the convergence of the

series as N _ oo. We have used the symbolic computation system Mathematica [15] to

compute 5 of these terms in exact rational arithmetic, carrying "_ as a parameter, and 11

terms for the special case when "y = 7/5. Although the general form of each _(_) is known

and only certain numerical coefficients need to be determined, the amount of computational

"labor" (using either purely numerical or symbolic computation) increases significantly as

N increases. Consequently, it is desirable to obtain as much information as possible about

the solution from the first few perturbation coefficient functions {_(_)}. This we do in Step

Two below.

Step Two: We now seek new approximate solutions # in the form

(4.5)
N

(o(r,O,M) = _ 6j,N(M)_v(J)(r,O),
5=1



where the new "amplitudes" {6j,N} must he determined. To determine the {6j#v}, we sub-

stitute (4.5) into the governing differential equation (4.1) and require that the residual be

orthogonal to each of the perturbation coordinate functions _0(k), i.e.,

f?f, (4.6) £((o,M)_o(k)rdrdO=O, l <_k <_N.

Equations (4.6) are a system of N (cubically nonlinear) equations to determine the N am-

plitudes {Sj,N(M)}. They must, in general, be solved numerically. However, this is straight-

forward to do using a standard method such as Newton's method. In particular, by starting

at "small" values of M, where we expect 6j,N ._ M 2j, and then proceeding to larger values

of M, the solution of (4.6) can be obtained in an efficient manner.

For the special case when N = 1, we let q5 = 61,1 _00), where _0(1) is given by (4.3) and

(4.4) with j -- 1, and we find that equation (4.6) yields the following cubic equation for

6 = 61,1:

(4.7) 6 - M2[1 ÷ c_ 6 ÷ c262 + ca6 a] -= 0,

where

(4.8)
c_ ----(4736 ÷ 1111-y)/7532, c2 = (147139 + 158248"7)/1084608,

ca = (9182 + 815931 -r)/23861376.

From (4.7) and (4.8), we see that

(4.9) 6=M 2+clM 4+O(M s) asM--*0,

and hence our hybrid solution reproduces the first term of the perturbation solution as

M _ 0. Also, the cubic equation (4.7) has one negative real root and two positive real roots

for 0 < M </_c "_ 0.5389247. For M >/_c, there are no positive real roots of this equation.

In Section 6 we discuss a possible interpretation of/_c in relation to the convergence of the

series (4.2).

In a similar manner, for N = 2, 3, 4, and 5, we have used Mathematica to perform the

integrations appearing in (4.6) and have expressed the resulting equations in exact rational

arithmetic. We then expressed the solutions {6j,N} as Taylor series in M 2 and, in each case,

we found that

(4.10) 6i,N=M 2i+0(M2N+_) asM--*0, forl<j<N.

Thus, for these values of N we have verified that our hybrid solution (4.5) agrees with the

first N terms in the perturbation expansion (4.2) as M --* 0. In addition, for each of these



values_ofN, we have also estimated the quantity -_c, i.e., the value of M for which, if

M > Me, the system (4.6) does not appear to have physically meaningful solutions. These

values of Mc are summarized in Table 1.

As an application of the results we have obtained, we estimate the critical Mach number

M. associated with this flow. Here M. is defined as the value of the free-stream Mach number

at which the flow locally becomes sonic for the first time and is determined as the solution

of the equation

(4.11) M. = + 1)qi: - + 1].

Here q,,_ox = 2 - O_o/O8 evaluated at r = 1, and 8 = r/2 is the maximum surface speed.

Van Dyke and Guttmann [12] have used 29 terms in the expansion (4.2), along with a

battery of numerical techniques (see also Andersen and deer [1] and Van Dyke [11]), to

obtain the estimate M. = 0.39823780 ± 0.0000001. In contrast, using our one-term hybrid

approximation _, we find that our approximation q_._x for qm_x is given by q_._x - 2 -{-

(7/6)61.1. Using equations (4.7) and (4.8) to compute 61,1 for a particular value of M, we

find_ from (4.11) that, for '7 = 7/5, our one-term hybrid solution yields the approximation

Mo = 0.407257966. This value differs from Van Dyke and Guttmann's estimate by only

about 2.3%.

In a similar manner, we find approximations to both M= and/_, using N = 2, 3, 4, and 5

terms in our hybrid approximation (4.5). The estimates we obtain, along with those obtained

by using N terms in the perturbation expansion (4.2), are summarized in Table 1.

TABLE 1

Approximations to M.

N

1

2

3

4

5

6

7

8

9

10

11

Perturbation

0.420943

0.409239

0.404577

0.402274

0.400979

0.400187

0.399671

O.399319

0.399071

0.398891

0.398757

Hybrid

0.407258

0.401704

0.399699

0.398948

0.398608

0.5389

0.4990

0.4740

0.4606

0.4513

10



In Section6, we discusscertain imphcations of the valueswhich appear in Table 1. For

the present,wejust note that the hybrid approximation to Mo based on N terms has about

the same accuracy as the perturbation approximation based on 2N terms. We have not tried

to push our technique nearly far enough to begin to compete with Van Dyke's results. We

only observe that with a small number of terms we have a better approximation.

5. Sink or Source Near a Free Surface

We now wish to apply our hybrid method to a problem for which the nonlinearity enters

through the boundary conditions; in particular, a problem in which the boundary itself is

unknown and must be determined as part of the solution to the problem. As a model of

this type of problem, we consider the problem of determining the steady, two-dimensional

shape of a free surface when a sink or source is placed above the surface. This problem has

been studied using a variety of numerical techniques by several investigators, e.g., Tuck and

Vanden-Broeck [9] and Vanden-Broeck and Keller [14], and also from a perturbation point

of view by Vanden-Broeck, Schwartz and Tuck [13].

We consider a sink (or source) of strength Q located a distance h above the undisturbed

height of a free surface. We introduce a rectangular coordinate system (h $, h y), with gravity

acting in the negative y-direction and with the origin a distance h below the sink (see Figure

4). We let the velocity potential be • = Q { (_)log[x 2 + (y- 1) 2] + _(z, y)} and denote the

elevation of the free surface by y = _?(z). Then the problem to determine _ and _ becomes

(5.1) = 0, y >

with

(5.2) (2_) x_+1--7/Bi(#, 7/) - _P: - <P=:_ - x2 _F (_/_ 1)2
=0

and

(5.3) [(1)B2(_,71)--_?__ai_(l+i72)-___(l+i? 2) _=+ x2+(77_i)2 =0

on y = _?($). Here "." - d/dx, c = Q2/2gh3, and a = 2"Th/pQ 2, where g is the acceleration

due to gravity, p is the density of the fluid, and "r is the surface tension coefficient. Equation

(5.2) is just the kinematic boundary condition on the free surface, while equation (5.3) follows

from Bernoulli's equation and the condition on the jump in pressure at the free surface due to

surface tension. We are interested in finding approximations to the solutions _ = _(x,y, e)

and 7/---- T/(x,e) to equations (5.1)-(5.3) for small values of e.

11



Step One: For small values of c, we look for regular perturbation solutions for _0 and 7]
in the form

N-1 N

(5.4) _= _ _i_(_)+o(_N), v= _ivj+o(_N+l) as_-,0.
i =0 j=l

Using the expressions (5.4)in equations (5.1)-(5.3), we find that the terms which are O(1)

in _ in equations (5.1) and (5.2) yield the result

(5.5) _(°) - (_) log(x2 + (y + 1)').

Then the terms which are O(c) in equation (5.3) yield the expression

(5.6) V, = (_) x2 (1+ x2)-2.

In a similar manner, the terms which are O(_)in equations (5.1) and (5.2) yield the result

1 [3(x2-(y+ 1) 2) 2(y+ 1)[(y+ 1)2-3x2]] "

and the terms which are O(e _) in (5.3) yield the expression

3 r$2(l-6x'+x4) ] 2a[1-8x'+3x41(5.8) v_ - 2_4 k iT_)_ + _ _T_-_)_ j

Continuing this procedure with the aid of Mathematica, we find that the general form of

the perturbation coefficient functions _(J) and _7i, J -> 1, is

3i

(5.9) _(i_(_,y)= (1/_+1) _ cj,_¢(_)(_,y),
k=2

j-1

,7_(_)= E a pi._(__)(1+ _')-(_J-'-_).
k=O

Here each cj, k is a constant, each Pi,k is a polynomial in x z, and the functions {_b(k)} are

defined by

¢(0)=log[x2+(y+l)]i, ¢(k) (O/Oy)¢ (k-x) fork_>l.

In particular, we find

x 2 (45 - 1909 x _ + 6890 z4 _ 2786 $_ + 9 x s - 9 x _°)_(,) =
32 n_ (1 + $_)n

a (12 - 853 z_ + 4008 _4 _ 2658 x6 + 148 x n - _o)

4_ -4(1 + _)_

24a z(2- 33x 2 + 40x 4 - 5x _)

_'_(1 + _2)s
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c2,2 = -c2,3 = (9- 87r2a)/128, c2,4 = (27 - 807r2a)/3S 4,

c2,5 = (3- 4-2".)/64, = 3/640.

From the analysis of this perturbation series with zero surface tension by Vanden-Broeck

et al [13] (see Section 6 for more discussion of their results), our formal series expansion of

the solution for this example does no_ converge for any non-zero value of _. However, despite

this lack of convergence, we proceed to Step Two of our hybrid method.

Step Two: Using the expressions above for the perturbation coordinate functions _CJ)(z, y)

and _/j(z), we look for new approximate solutions in the form:

N N

(5.10) = = 6N+J'i=1

where the new "amplitudes" {6j,N} must be determined. (We note that _ satisfies V2_ : 0

for any choice of the amplitudes {8i,N}.) To 'determine these amplitudes, we substitute the

expressions (5.10) into the boundary conditions (5.2) and (5.3) and require that the residuals

be orthogonal to appropriate sets of test functions {ak} and {ilk}, i.e.,

(5.11) //ooBl(qo,O)ak(z)dx=O, f/ B2((o, fl)flk(x)dx=O, 1 <k<N.

Once the test functions have been selected, equations (5.11) are a set of 2N equations

for the 2N unknowns {Sj,N, j = 1,2,... ,2N}. For simplicity we select as test functions

ak = flk = r/k(z). The resulting hybrid solutions are discussed in the next section.

6. Discussion

The hybrid perturbation-Galerkin method, as we have described it here, is a semi-

analytical, semi-numerical technique which appears to have the potential of being a useful

tool both to complement and to supplement existing standard methods of analysis. It is

semi-analytical in the sense that some of the analytical structure of the solution is deter-

mined by first constructing one or more perturbation approximations to the solution. It is

semi-numerical in that new amplitudes of the perturbation coordinate functions typically are

determined numerically by solving standard Galerkin equations associated with the prob-

lem. The method seems to have considerable potential to be an effective problem-solving

tool because the perturbation coordinate functions appear to be very effective trim functions

in the Galerkin approximation. Intuitively this is because, by the way they are constructed,

they describe the basic nature of the solution, at least for parameter values near their point

of generation.
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In our first example (Section 3), we analyzed a simple, linear boundary-value problem

on a bounded domain, for which an arbitrary number of terms in the regular perturbation

series can be computed in a straightforward manner. By examining the singularities of the

amplitudes {6j,N} in our hybrid solution, it appears that the convergence of the perturbation

series is limited by a pair of complex conjugate singularities located near or at 4-6.70/. (This

follows by analogy from the analysis of several similar problems, involving ordinary differ-

ential equations, for which the singularities of the {_,N} in the complex e-plane converged

to the singularities of the actual solution as the number of terms in the approximation in-

creased. See especially [2]. In fact the location of the poles of the {6j,N} which are closest

to the origin form the sequence 4-7.75 i, 4-7.15 i, 4-6.803 i, 4-6.721 i, 4-6.7048 i, 4-6.70283 i, ....

Another pair of singularities is indicated near e _ 4-9 i .) These singularities appear to have

no immediate interpretation, but nonetheless limit the direct usefulness of the perturbation

expansion.

In Figure 2, we have plotted the relative L2-error between numerical solutions to problem

(3.1)-(3.2) and perturbation or hybrid approximations. The figure clearly illustrates that

the hybrid method allows us to obtain useful information about the solution well beyond

the radius of convergence of the perturbation solution. Also, there is no indication that the

range of convergence of the hybrid solution is limited.

In Figure 6, we have plotted the values of the solution at the center value x -- y = z'/2 as

calculated numerically and by the use of the hybrid technique, where the number of terms

(N) ranges from 1 to 8. It is interesting to note that our hybrid solutions appear to form an

alternating sequence which brackets the true center point solution. Figure 1 shows that the

solutions have their peak "elevations" at the center point.

The contour plots shown in Figure 7 demonstrate that higher-order perturbation func-

tions can be very similar to one another. This suggests that the perturbation functions which

are of higher order than these shown may be fairly well approximated by linear combinations

of the functions shown (see observation (2) in the introduction). Figure 7 also demonstrates

that the perturbation functions may have higher symmetries (group order = 4) than the so-

lutions (group order = 2) which they are used to approximate. Such additional symmetries

may be exploited in the steps of the hybrid method which are computed numerically. The

symmetries of the perturbation functions follow a regular pattern which can be determined

a priori.

From a singular perturbation point of view, as e becomes large the solution to problem

(3.1)-(3.2) takes on a somewhat complicated form. The leading term in the outer expansion

of u is 2(_r - x)tan(y) for 0 < x < _r, 0 < y < r/2, and is -2xtan(y) for 0 < x <

r, _r/2 < y < _r. Boundary layers develop along x = 0 for 0 < y < _r/2 and along x = _r

14



for 7r/2 < y < 7r. In addition, an internal layer forms along y = _r/2, as well as additional

boundary layers at (0, _r/2) and (_r, _r/2). From the contour plots shown in Figure 1, it may

be seen that the boundary and internal layers are beginning to be formed by the hybrid

approximations as e increases, even though these approximations are based on the small e

expansion of the solution, where no such layers are evident.

This last observation suggests that the hybrid method might be a useful tool for the

general problem of determining an appropriate decomposition of the domain for a purely

numerical solution to a specific problem. In particular, suppose that some "singular" behav-

ior of the solution is anticipated for large values of a parameter appearing in the problem

formulation. To help determine the location and, to some extent, the nature of this singular

behavior, the hybrid method could be applied in the following way. First, a (regular) pertur-

bation expansion of the solution is constructed for small values of the parameter. The hybrid

method is then applied, using the small parameter perturbation coordinate functions, and

then the behavior of the hybrid approximation is noted as the parameter value is increased.

From the example of Section 3, as well as several other examples we have examined in some

detail, it appears that the hybrid solution simulates at least some of the singular behavior

of the exact solution as the parameter value is increased, and that this simulation becomes

more accurate as the number of terms in the approximation is increased.

In our second example (Section 4), which involves an infinite domain, the regular per-

turbation expansion of _ is straightforward, although tedious, to compute. Frankl and

Keldysh [4] have proved that _ is analytic in M 2 about M 2 = 0 and hence the pertur-

bation expansion (4.2) is actually the Taylor series expansion of the exact solution. They

did not, however, determine the radius of convergence Mc of the series. Through a care-

ful analysis of the first 24 terms in the series, Van Dyke and Guttmann [12] report that

Mc = 0.402667605 -4-0.000000005, which is about 1.11% greater than their estimate of M..

If this were indeed the case, it would imply that shock free solutions exist for a continu-

ous range of values of M above the critical Mach number. However, Van Dyke [private

communication] now believes this result to be in error and that Mc -- M..

Although Van Dyke and Guttmann were unable to determine the nature of the singularity

which limits the convergence of the series, we can safely assume that the singularity is related

to the formation of a shock and hence represents a real singularity with a definite physical

interpretation. The numbers ._r presented in Table I are estimates for the value of M above

which no physically meaningful hybrid solution to the problem exists. In this sense, they can

be thought of as estimates of the radius of convergence of the series (4.2). If more of these

estimates were computed and if it could be shown that they converge to the same limit as

the estimates _r., this would lend support to the conjecture that M_ = M..
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The solution to our third example (Section 5) involves two unknown functions (i.e.,

the potential function and the shape of the free surface), and the associated perturbation

expansions are somewhat more difficult to compute than the expansions associated with

the first two examples. However, the general form of the terms in each expansion can be

determined and, in principle, only certain numerical constants need to be computed. Using

a complex variable formulation of this problem (with zero surface tension) Vanden-Broeck et

al [13] numerically computed these constants in the first 34 terms in each expansion. They

analyzed the resulting series for the free surface and found it to be of exponential-integral

character (i.e., the coefficient of e" behaves like n! for large n). Consequently, the series

diverges for all nonzero values of c. They use a number of techniques to "sum" this divergent

series and show that this analysis leads to a free surface shape with a jump discontinuity

due to the location of a branch cut. One such free surface profile corresponding to our

e = _r_/5 = 1.974 is indicated by a dashed line in Figure 5. Our hybrid solution with N = 2

is shown by a solid line. Vanden-Broeck et al indicate that the jump discontinuity in their

solution could be removed a applying a certain iterative procedure, but the corresponding

profile was not displayed. Using a numerical, series truncation method on another complex

variable formulation of the problem, Tuck and Vanden-Broeck [9] found a cusp like solution,

corresponding in our notation to a value of e = ec _ 6.311. Vanden-Broeck and Keller

[14], using a similar method, treated the same problem we are considering, except that a

horizontal fixed surface is present at a finite distance above the sink. They found solutions

corresponding to our problem for values of e larger than c_, but did not find any steady

solutions for 0 < c < cc . They indicate, however, that solutions with waves may exist for

in the range 0 < _ < e_.

The hybrid approximations presented in Section 5 appear to give "physically realistic"

approximations to a steady solution to the problem, as indicated in Figures 4 and 5. In

[2] we applied our hybrid method to an eigenvalue problem associated with an anharmonic

oscillator. For this problem, the perturbation series also has a zero radius of convergence,

but the hybrid approximations converge monotonically to the true solution as N increases.

Based upon this experience, it is certainly possible that our hybrid approximations to the

free surface for values of e in the range 0 < e < e_ are converging to a steady state solution.

Obviously, this difficult problem needs much more investigation, e.g., either the development

of a numerical method which will yield the steady solution for _ in the range 0 < e < _, or

a proof that no such solution exists in this range of parameter values.
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FIGURE CAPTIONS

Figure 1. Surface and contour plots for 8-term hybrid and numerical solutions of the simple

partial differential equation of Equations (3.1)-(3.2). The hybrid solutions shown for e = 1

and e = 5 are highly accurate. Some irregularities may be seen in the relatively flat portions

of the hybrid solution for _ = 20 which do not appear in the numerical solution for _ = 20.

Nevertheless, the relative L2-error is less than 1%.

Figure 2. R.elative L_-errors of perturbation and hybrid solutions of the simple PDE problem

as a function of the parameter c. The number of terms N ranges from 1 to 8. The log-log

plots of the perturbation errors fall nearly on straight lines which intersect one another near

the radius of convergence, R = 6.7026. The hybrid errors for given N and _ are significantly

less than the perturbation errors for the same N and c and show no signs of divergence.

Figure 3. Streamlines for two-dimensional flow around a cylinder for Mach number M = 0,

the low velocity limit of the solutions to Equation (4.1).

Figure 4. Free surface profile for the two-dimensional flow induced by a sink (black dot)

above a liquid surface (see Equations (5.1)-(5.3)). The effects of surface tension are ignored.

The horizontal and vertical scales differ.

Figure 5. Free surface profiles for c = _r2/5 with zero surface tension as computed by the

hybrid method (solid line) and as computed by Vanden-Broeck et al (dashed line).

Figure 6. Maximum values of the solution (x = y = 7r/2) of the simple PDE problem

of Section 3 as computed numerically (dots) and by the hybrid method (solid lines) using

from N = 1 to N = 8 terms. The results for N = 8 are useful well beyond the radius of

convergence, R, of the series expansion.

Figure 7. Contour plots of the first eight perturbation functions for the simple PDE problem

of Section 3 demonstrate that the higher order perturbation functions can be very similar to

one another and can have higher symmetries than the solutions they are used to approximate.
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